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Spin liquids are phases are known for their lack of long
range magnetic order and fractionalized quasiparticles.
While fractionalization has been understood in 1D an-
tiferromagnet at S = 1/2 via the Bethe ansatz [1], ex-
tending this solitonic mechanism to higher dimensions
had been difficult. Other mechanisms of fractionaliza-
tion were then sought out for, with 2d spin-charge separa-
tion realized in considering fluctuations over a mean field
theory approach from a quantum spin model or the t-J
model [2–4] . However, it was unclear whether this frac-
tionalization would survive the resulting strongly inter-
acting gauge theory model. In their work [5] , Senthil and
Fisher demonstrate a general framework to study frac-
tionalization in strongly correlated systems which can be
extended to arbitrary spatial dimension and spin-rotation
non invariant systems. They studied a specific class of
microscopic models which interpolate between an anti-
ferromagnetic Mott Insulator and a conventional d-wave
superconductor by invoking Z2 gauge theory. Z2 vortices
are realized to play a vital role in both the emergence of
fractionalization and the appearance of a Mott Insulat-
ing state. Since the Mott Insulator is a phenomen born
out of strongly correlated interactions, its realization is
a sign that their framework accurately describes strong
electron-electron interactions. In this paper, we will fo-
cus on that state, a type of Mott Insulator called the
nodal spin liquid [6].

I. MICROSCOPIC MODEL

We first introduce the model studied in [5]. Consider
a generalized Hubbard model on a 2d square lattice with
local d-wave pairing fluctuations, H = H0 +HJ +Hu +
H∆,

H0 = −t
∑
〈rr′〉

c†rαcr′α + h.c. (Hopping)

HJ = J
∑
〈rr′〉

Sr · Sr′ (Heisenberg)

Hu =
∑
r

u(Nr −N0)2 (On-site)

H∆ = ∆
∑
r

(
eiϕrpr + h.c.

)
(Pairing)

∗ Submitted for Spring 2021 Special Topics in Many Body Physics

with local d-wave pairing field,

pr =
∑
r′∈r

∆rr′(cr↑cr′↓ − cr↓cr′↑) (1)

and ∆rr′ = ∆ for bonds along the x-direction and ∆rr′ =
−∆ for bonds along the y-direction so that pr destroys
a dx2−y2 pair of electrons centered at the site r. In this
model, crα is the annihilation operator of an electron with
spin α at site r. We may split this electron by introducing
a chargon operator br and spinon operator frα with,

c†rα = b†rf
†
ra (2)

where brα is the chargon annihilation operator and frα
is the spinon annihilation operator. The chargon is a
spinless chargeful boson while the spinon is a s = 1/2,
chargeless fermion.

After this electron substitution, projecting back to the
physical Hilbert space using a Z2 gauge field, and retain-
ing a particular set of fluctuations about the saddlepoint
of a Hubbard Stratanovich decoupling of the spin inter-
action term [7], Senthil and Fisher arrive to a chargon
spinon coupled to a Z2 gauge field σij living on the links
of the lattice site S = Sc + Ss + SB .

Sc = −2tc
∑
〈ij〉

σij cos(φi − φj), (3)

Ss = −
∑
〈ij〉

σij
(
tsij f̄ifj + t∆ijfi↑fj↓ + c.c.

)
−
∑
i

f̄ifi (4)

where exp(−SB) = 1 for an even density of electrons.
In this case, the system realizes a band insulating state
for tc � 1 and a BCS superconducting state for tc � 1.
While this even density case also realizes a fractionalized
insulat state due to a confinement-deconfinement transi-
tion of spinons/chargons, we will focus more on the case
of an odd density of electrons for which the Mott Insula-
tor phase appears.

II. MOTT INSULATOR: ODD ELECTRON
DENSITY

Mott Insulators are insulators that under standard
band theory would be classified as conductors, but due
to electron-electron interactions, they act as insulators.
In the simplest case, we consider one electron per unit
cell so that the conduction band is half-filled [8].

Under the class of microscopic models described above,
exploring the odd density of electrons means considering
a Mott Insulator.
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FIG. 1: Phase diagram tc, t∆ vs. K for microscopic
model with odd electron density and tc � 1. As one
increases K for low ts, t∆ 6= 0, the antiferromagnetic
insulator (AF) evolves to a conventional spin-Peierls

state (SP) to a fractionalized nodal liquid (NL).

Then, the Berry action is non-trivial,

SB = −i
π

2

∑
i,j=i−τ̂

(1− σij) (5)

If tc � 1, the chargons cannot propogate and will be
gapped out. We can integrate out the chargons from Sc
and be left with a plaquette product term in its stead,
S = Sσ + Ss + SB ,

Sσ = −K
∑[∏

σij

]
(6)

If K = 0, this action formally reduces to the Heisenberg
antiferromagnetic spin model,

H = J
∑
〈rr′〉

Sr · Sr′ (7)

and we attain an antiferromagnetic insulator. If K =
∞, the gauge fields are effectively frozen out and we
can choose σij = 1 for every spatial link. Then, the
spinons propogate under tsij spinon coupling and t∆ij d-
wave spinon pairing. This d-wave pairing induces a gap-
less ”d-wave” dispersion at four nodes in the Brillouin
zone. This is therefore a fractionalized insulator with de-
confined, gapless spinons, gapped chargons, and gapped
visons: a nodal spin liquid. This nodal spin liquid re-
mains stable for finite K but across a critical coupling
Kc undergoes a confinement transition to a translational
symmetry breaking order: the spin-Peierls state. While
it is difficult to calculate a precise phase diagram, con-
sidering different limits of ts, t∆, and K indicate a phase
diagram of the form shown in Figure 1.

If tc � 1, we enter the superconducting phase. In
this case, the chargons condense so that 〈eiϕ〉 6= 0. This

condensation breaks both the U(1) charge symmetry and
Z2 gauge symmetry. However, one may show that the
U(1) hc/e vorticies are confined unless they are bound to
the Z2 vortex. In fact, since the chargons are a relative
semion with respect to both the U(1) vortex and the
Z2 vortex, the U(1) vortex will acquire a phase hc/2e.
This way, the chargon acquires a phase of π revolving
around the U(1) vortex and Z2 vortex pair. Moreover,
since the spinon is a relative semion with respect to the
Z2 vortex, it ”sees” the vortex pair [9]. The appearance
of massive hc/2e vortices [10] and spinons implies that
we have recovered the d-wave superconductivity.

In fact, the nodal spin liquid can be further understood
as a descendant of the BCS superconductivity. Using
boson-vortex duality [11–15] , we can trade the chargon
fields for its respective hc/2e vortices such that the su-
perconducting phase is represented by the vortex vacuum
while the insulating phase is the viewed as the vortex
condensate. If one starts in the d-wave superconduct-
ing state, pairs the BCS hc/2e vortices, then condenses
the resultant hc/e vortices, the resulting action describes
gapped visons, gapped chargons, and gapless spinons, i.e.
the nodal liquid. This perspective demonstrates that the
vison is the fragment of the BCS hc/2e vortex after they
condensed into pairs [5].

While this microscopic description may come out of
controling the tuning parameters, this transition from
BCS superconductor to nodal spin liquid can occur by
introducing quantum disorder to the superconductor, i.e.
allowing the phase field of the order parameter to fluctu-
ate greatly [9]. This analysis demonstrates the spinon of
the nodal liquid (or nodon) is a remnant of the low en-
ergy, gapless quasiparticles of the d-wave superconductor.

This perspective implies that the nodal spin liquid is
a descendant of the d-wave superconductor.

III. OUTLOOK

Many aspects of Senthil and Fisher’s paper were not
new. The fractionalization mechanism discussed here can
actually be shown to be equivalent to the vortex-pairing
mechanism developed by Balents. [16, 17] Even using Z2

Gauge theory to describe fractionalization was not new.
Previous works showed that the Sp(2N) antiferromagnet
at large N with frustration [18, 19] or in quantum dimer
models with frustration [20, 21] reduce to a Z2 Gauge the-
ory. X.G. Wen proposed pairing and condensing pairs of
spinons in an conventional SU(2) Heisenberg magnet by
to reduce the gauge symmetry to Z2. So what was the
innovation? Senthil and Fisher’s innovation lay in their
ability to generalize this vortex pairing description via Z2

gauge theory to a large class of models for arbitrary di-
mension while capturing strongly correlated physics via
the realization of the nodal spin liquid.. While it is not
clear if these models accurately describe cuprate super-
conductors or other strongly correlated materials, this
paper seemed to be essential in the development of mod-
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eling fractionalized exotic phases.
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